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My GEOMAS Context
Found_atiorn’/ bearing capacity & settlement
| Slope stability / landslide
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‘ Wind turbine




My GEOMAS Outline

1. Basic concepts of continuum mechanics

2. Elasticity
1. Linear elasticity

2. Nonlinear elasticity

3. Perfect plasticity

4. Plasticity in Soil Mechanics
1. Non linear plasticity
2. lIsotropic hardening
3. Single yield surface plasticity
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My GEOMAS

BASIC CONCEPTS OF CONTINUUM MECHANICS

Stress tensor

Equilibrium

Principal stresses and invariants
Strain tensor
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Ty GEOMAS Basic concepts of CM

1. Stress tensor

Stress state around a point:
Given a domain (D) occupied by a solid body

I(M.-n)=-T(M.n)

dF is the resultant of the elementary loads applying on the surface (S)
T(M,n) is defined as the stress vector and is given by
dF =T(M.n)dS
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Ty GEOMAS Basic concepts of CM

1. Stress Tensor

n ‘X
dF,.,, *“~ .7 B
d_F;A-»B _84‘4

h.

The magnitude of force acting on the part A at point M
is equal and is acting in the opposite direction at point
M belonging to the part B.
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Ty GEOMAS Basic concepts of CM

The stress vector T(M,n) can be projected on the axis
oriented toward the external normal n and on the
tangential axis t.

IT(M.n)=on+rt
ois the normal stress
7is the shear stress vector
[zasnf =+’



5 GEOMAS Basic concepts of CM

1. Stress tensor

Around point M

On: (ABC): nommalt n(m.n,.n;) dF =dST(M.n) 3
orthonormal basis (e;.¢.¢;)
(MBC) normal —g. ﬂ=dS,£(M,—gl)
(MAC) :normal -e,, dF, =dS,T,(M,—e,)
(MAB) :'normal -e;, dF; =dS;T;(M . —e;)
INSA ..



5 GEOMAS Basic concepts of CM

1. Stress tensor

2dSn = ABA AC=(MB—MA) A(MC—MA) = MBAMC+MANMB
'+ MAAMB+MCAMA=2dS,e, +2dS,e, +2dS, e,

Multiplying by e;: dSl = dSn,

Same fore,ande;: dS, =dSn, and ds, = dSn,



Ty GEOMAS Basic concepts of CM

1. Stress tensor
Equilibrium of the tetraedra leads to

dST(M.n) +d51£1(M=—§1) + dSzZz(Ma “92) + dSsL(M» —¢;)=0

& dST(M.n)+nmdST\(M.—e)) +n,dSTy(M.—e,)+ndST;(M.—e;) =0
=I(M.n)=mT,(M.e)+mTy(M.e,)+nT;(M.e;)

— —

In @ condensed form

IT(M.n) =[{T1(M.&} {T,(M .} .{T:(M.e;} | {n}
Or its tensorial expression

INSA I(M.n)= [0] in}= o.n
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1. Stress tensor
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In the same way for axes 1 and 3 so the stress tensor can be defined as
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Ty GEOMAS Basic concepts of CM

2. Equilibrium of a small volume

o0,
13
oi(x. 3. 33 +dx3) = 013(xlax2’x3)+_dx3
ox;
00,
-0y, (%, %5, X3) Oy (X, Xy + dXy. X3) = 05 (X), X5, X)) + . dx,

2

oo,
on (X% +a%.%5. %) = 03, (X, X%,. ) +—Ldx,

ax,

—0;(%,%,.X;)

12 (35 %5, X5)

f :aforce per unit of volume
The equilibrium a this small volume under the force f and the contact forces
applied by the other part of the body




Ty GEOMAS Basic concepts of CM

2. Equilibrium of a small volume

Projection on e; direction
—0y, (. %, x3)dx,dx; + 0y, (0 + dxy. X, X3 )dx,dx;

—0y, (X X5 X3 )dxydx; + 0y, (X, X, +dxy. X3 )dxydx,

—0y3 (X, X5, X3 )dydx, + 043 (X, Xy X5 + d; )dxydx, + fidxdx,dx; =0

dvV + f,dV =0

: : d o &
Which can be rewritten as ~ ldv + 222 gy + Z28
ox, ox, x;

or 60'11 " 60'12 - 60'13
oy oxy 0Ox3

On e, and e; directions

+f,=0

60'21 60‘n 60'23
+ +

&g | ox,  ox

0oy, 60'32_ . 00753

+f,=0

+f;=0

I |t



Ty GEOMAS Basic concepts of CM

2. Equilibrium of a small volume

The set of equations can be rewritten as



Ty GEOMAS Basic concepts of CM

3. Principal stresses

We can find cut surfaces oriented in such a way that the shear
stress 7vanishes. These directions are called principal directions.

IT(M.n)=on+r1 IM.X)=cX=0X
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Ty GEOMAS Basic concepts of CM

3. Principal stresses

From a mathematical point of view, these principal directions
can be found be solving the following set of equations

g4 =04 Jo (%‘Q'KZQ

A non trivial solution exist in (e, e,, e5) space only if

det(g—1).X =0

Solutions for the polynomial of 37 degree exist in o
INSA &= (Gb O, O3 OF O; =0, O3 Or 0; = 0> :0'3)



Ty GEOMAS Basic concepts of CM

3. Principal stresses

In the principal direction space (X;, X,, X;), the stress tensor is a
diagonal matrix

(g, 0 0)
Srrxy=|? o O
\0 0 O"_),J

Solving det(g —[) .X = 0 leads to

O13

O3 On O33—0
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Ty GEOMAS Basic concepts of CM

3. Principal stresses

Where /;, I, and I; are the invariants of the stress tensor

Il=ﬁ(g>=0‘ll+0'n+0'33=0'l+0'2+0'3
I, =2 [(Tro) -Tr(o* SR S
2=5[( g) —Tr(g )] =003+ 010 + 0033~ 0y —0y3 —0y” = 0103 +0,0, +0,0;



Ty GEOMAS Basic concepts of CM

3. Principal stresses

In the principal space (M; X1, X 2, X 3 ), the components of the
stress vector acting on the surface with n vector are

3 s N (o) r 3
I O, m o
1T, = O, ANy p=10,M, ¢
s.I; L 03/ ;n34 L0-3n3J

where n;, n, and n; are the component of the unity vector n
given by m; +m3 +n3 =1

Finally, one obtain
’ R B B

g+ +—5= Lame ellipsoid
—— n N, n
INSA |+ 1 2 3




Ty GEOMAS Basic concepts of CM

4. Strain tensor (roughly introduced)

‘ an
M

O
o e\

M, '\rﬁ%

During loading, a solid particle in point M, with initial coordinates X in
moving and occupying a hew position in point M with coordinates x.
The displacement vector of point MO( X ) is given by




Ty GEOMAS Basic concepts of CM

4. Strain tensor

. - \
€ Mdué |
N ~

The solid is deformed under loading and points My, and N, are moving
to M et N respectively
The unit increase (or decrease) in size is given by

A
e(My.n)= Nhn}{
INSA 5 e M|




Ty GEOMAS Basic concepts of CM

4. Strain tensor

) /
. ,3;@‘

o e\

M, '\rﬁ%

The displacement of a particle occupying the position from M, at time
t,to M at time tis given by

OM=0OM,+u or X=X+u whereu isthe displacement
vector between t, and t.

rrrrrrrrrrrrrrrrrr
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Ty GEOMAS Basic concepts of CM

4. Strain tensor

The displacement of a small vector dX instead of vector X

Therefore, we can write
dx =dX +du

The displacement vector du which dependant on X, is given by

ou;

29

Or by dx=dX +du=FdX
Where F is called the gradiant of the transformation

du =

deQi =VudX

F=£+2

msp = and [is the unit matrix

LYON



Ty GEOMAS Basic concepts of CM

4. Strain tensor

The gradient of the displacement vector can be decomposed in a
symmetric and screw symmetric parts (small perturbations)

Vu =%[Vy + ’v:_:}%@- 'Vg]

S 7 ~ ’

: !
. ou;
8§=l(au'+ J) 1 fn &3
2 axj axi [3]= En E&n &n
O =l(aui_allj) & & &y
v
2 axj 6x,
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5 GEOMAS Basic concepts of CM

4. Strain tensor

u(Q,) = u(R) +QdX + £dX

For rigid bodies: QdX = edX =0 so u(Qp)= u(R)



Ty GEOMAS Basic concepts of CM

4. Strain tensor
Form small perturbations

u(M.n)=¢e(M)n
u(M.e)=g,8 +epe, +&38;

uUy(M.e,) =&y 8 + &y, + &x38;

u;(M.e;) = &3, + 378, + £3,8;

Similarly to principal stress components, we can obtain principal
strain components

g 0 0
[1-:]@&2&)= 0 &5 0

0 0 g
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Body and
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My GEOMAS

ELASTICITY

1. Linear elasticity

2. Nonlinear elasticity



{5 GEOMAS Linear elasticity

e Features

— In the elastic domain, a material recover its initial
state, after being loaded and deformed, when the
external loading is stopped.

— The stress state is only depend on the strain state
(and vice versa)

LYON



{5 GEOMAS Linear elasticity

Free energy and constitutive relations

The free energy per unit volume is defined as W(g),
where € is the (macroscopic) strain .

W(e) depends only on the strain state and is called the
strain energy. This holds for non dissipative materials

From Y(e) we calculate the stress o from the
constitutive equations:

3 0¥ (g)

LYON
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{5 GEOMAS Linear elasticity

1D case (Hooke’s law)

The simplest choice of the energy that provide the
constitutive behaviour is

E

4] O

W (e) = %EEZ 0—/\/\/\/\-—>
b
From which we obtain the stress
oV
o= () = E¢
de

—
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{5 GEOMAS Linear elasticity

* |sotropic linear elasticity (3D)

Ei1=Ep=Es=E

V,-j =V
on [1—v v v 0 0 0 €1l
022 v 1 —v 0 0 0 £
o3 | E v \ 1 —-v 0 0 0 ; fa |
| (O+wI-2v)| 0 0 0 1-2v 0 0 £12
T3 0 0 0 0 1 —2v 0 €13
B _ 0 0 0 0 0 1-2v €23
T;; =—-§—-E--+ VE €10
U 4v) U (14 v)(1~-2v) KK



{5 GEOMAS Linear elasticity

* [sotropic linear elasticity

Inverted the previous equation leads to

€11 - 1/E —v/E —v/E 0 0 0 7 011
€77 —v/E 1/E —v/E 0 0 0 077
£33 —v/E —v/E 1/E 0 0 0 033
en || 0 0 0 1/2G6 0 0 o
€13 0 0 0 0 1/2G 0 113
€73 0 0 0 0 0 1/2G 123

G, the shear modulus is expressed by G = E/2(1 + v).

| e
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Formules de conversion

Les propriétés élastiques des matériaux homogénes, isotropes et linéaires sont déterminées de maniere unique par deux modules quelconques parmi ceux-ci. Ainsi, on peut calculer chacun a partir de deux d'entre eux

en utilisant ces formules. https:/fr.wikipedia.org/wiki/Module _d%?27¢lasticité

(A, G) (E,G) (K, X) (K,G) (Av) (G,v) (E,v) (K,v) (K, E) (M, G)
K= A+ 26 __EG A1+v) 2G(1+v) _E 4G
3 3(3G—E) 3 3(1-2) 3(1-2v) 3
E— G(3M+2G) 9K (K—)) 9KG A(1+v)(1-2v) 2G(1 + v) 3K(1 - 2v) G(3M—4G)
MG 3K—\ 3K+G v M-G
_ G(E-2G) _2G 2Gv Ev 3Kv 3K(3K—E) _
A T3G-E K-35 1-2v (1+v)(1-2v) T+v SEK-E i =2
G = 3(K—\) A(1-2v) E 3K(1-2v) 3KE
2 2v 2(1+v) _2(1+1/) OK—E
V= A E 4 A 3K—2G 3K—E M-2G
2(A+G) 2G 3K—\ 2(3K+G) 6K 2M—-2G
M = \+2G G(4G-E) 3K — 2\ K+ 4G A(1-v) 2G(1-v) E(1-v) 3K(1-v) 3K(3K+E)
3G-E 3 v 1-2v (1+v)(1—2v) 1+v 9K—E




{5 GEOMAS Linear elasticity

e Uniaxial Stress Condition

¥ In a uniaxial stress condition we have:
g;,;%20

and

O =033=T13=Ty;3=Tp3=0

which implies that the previous
relation becomes




{5 GEOMAS Linear elasticity

e Uniaxial Stress Condition

€11 - 1JE —v/E —v/E 0 0 0 7 ( o
- —v/E 1/E —vJ/E 0 0 0 0
£33 —v/E —vJE 1/E 0 0 0 0
e | | 0 0 0 126 0 0 0
£13 0 0 0 0 1/26 0 0
£3 0 0 0 0 o 126 ||\o




{5 GEOMAS Linear elasticity

e Uniaxial Stress Condition

This reduces to two equations

1 —V

g1] = —oq1 and &) = &33 = —01]
E E

So finally —, _ %33 or £33 = —VE|]
€11

The axial stress causes the steel rebar to extend in the axial
direction, the rebar becomes slimmer (negative &3;), due to
Poisson’s effect.



{5 GEOMAS Linear elasticity

Plane Strain Condition

Structures that are very long in one dimension while
having a uniform cross section with finite dimensions

Soil embankment in plane strain conditions



{5 GEOMAS Linear elasticity

Plane Strain Condition
The strains along the z-axis are assumed to be nil :

E33=€;3=€y3=0

: o11 ‘ 1 —v \) ) . O -
- vty 0 0 0
. : v v 1-v 0 0 0
| }=(1+v)(1_2v) 0 i oo O O |
T13 0 0 0 ) O :
123 0 0 0 0 ) .
INSA ==



{5 GEOMAS Linear elasticity

Plane Strain Condition
Which can be reduced to

011 C1—v v 0 |/ &n
£ | 0
= = E
72 A+vi-2v| " v 2
T12 i 0 0 1—2\) | €12
By inverting
€11 - Il —v V 0 B 011
I +v
€22 = vV 1l —v 0 022
E
£12 i 0 | B 112




{5 GEOMAS Linear elasticity

Plane Stress Condition

$ In the plane stress condition the
\ stresses in the z-direction are
T / assumed negligible

O33=T;3=T,3=0

033=T)3="T3=0




{5 GEOMAS Linear elasticity

Plane Stress Condition

€11 - 1/E —v/E —v/E 0 0 0 1
) —v/E 1/E —v/E 0 0 0 022
£33 —v/E —v/E 1/E 0 0 0 0
e [ | 0 0 0 126 0 0 T
£13 0 0 0 0 1/2G 0 0
£23 0 0 0 0 0 1/2G _ v




{5 GEOMAS Linear elasticity

Plane Stress Condition

€11 1 —V 0 011
1

€72 = — —V 1 0 022
E

€12 0 0 1+ v 12

011 1 v 0 ][ en
s 1 0 £

o = Vv

22 1_\)2 22

T12 i 0 0 Il —v B £12




{5 GEOMAS Linear elasticity

To summarize

Plane Strain Condition

€11 1 —v v 0 T [ o
1 4+v
€2 ¢ = v 1 —v 0 097
E
€12 0 0 1 1| w2
Plane Stress Condition
€11 -1 —v 0 o1
1
€22 N —V l 0 0922
E
€12 0 0 1 4+v 12
INSA 5 = -




{5 GEOMAS Linear elasticity

To summarize

Plane Strain Condition

011

€11
E | 0
o = : o €77
22 (14+v)(1 —2v) ‘
T12 i 0 0 1 — 2y - -
Plane Stress Condition

O11 1 v o ) N

O L E ' 1 O 8
22 - :
T12 0 0O l—v "2

INSA ;=




{5 GEOMAS Linear elasticity

* Constants

— Young modulus E and Poisson’s coefficient

— Or shear modulus G and the isotropic bulk
modulus K

— Or Lameé coefficients

* Limitation

— Does not consider the loading path and the
history of loading

—
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Nonlinear elasticity



{5 GEOMAS Nonlinear elasticity

* Features

— If the model is derived from a potential: hyperelasticity

— If it does not derived from a thermodynamic potentiel
. hypoelasticity

— Stress increment depends not only from the strain’s
increment but also from the actual stress

 Constitutive relation

0ij =Cij(Cmn)éx1  and Gij = Ciji (Emn)Ex1

INSA & € = Dijk—' (Cmn )0k and €y = Dij'k.l (Emn)Oki



{5 GEOMAS Nonlinear hyperelasticity

* Features
— There is no intrinsic dissipation

— The Model is characterized by the knowledge of
the free energy (W;) or the complementary
energy density function (Q;) such as W + Q = 5;¢;

oWle . c-W
o J | Oe;; 0gy
59(51{1) ~2
c. = — , c-W

I |t
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{5 GEOMAS Nonlinear hyperelasticity

W W W aw e*w ew
86121 deqq0€,, d€110¢€s; d€11dY;,  0€110vp3  Oepdyy
32 W 32w 1w W W

de3, dep0€33  0€0Yy;  €x0¥y3 - 9€x073

02 W 02w L 4

de3s  e330v1n 1853381(23 de33073

[H]= ‘W o ew - W
V5 107120723 aYua_Ysl

S | iz . .
Symmetric a—yg 372071

o> W
dY31 |

. .
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Examples of hyperelastic models



{5 GEOMAS Nonlinear hyperelasticity

K.'E'p{ i—=mn)

K= 3 , |
1—({l—n K ~q—
Boyce (1980) -n%G, K,. G, etn
I

| G=Gppt™

v = Constante ou K/'G = Constante

l-m

2 2310 2 v,Epetn |
| E=EDPEI[EE‘_J [’*%%{]T

! !
Loret (1981) ou o i
I=m i
' G_G{JF‘:[L]
FPa
J-n 1 Gﬂ, Kﬂﬂil‘]
o l) z
a
1~£5]-{1--n}-5
6Gy p




{5 GEOMAS Nonlinear hyperelasticity

ot = U
: " 2G
Mroz et Noms . &G
{1931_} £t = K ]n[ p ]_fusij E}'G'

K= "Ef{_[] - Ky exp(-K31y)]
Chen et Baladi 1=K,

(1985) K;. K. K. G;. G et Gy

G-—l—[] Gy exp -Gl'h'ﬂ]]

i
-+
R =
Lade et Nelson Pa 1=2v p]

(1987T)

v, Mp,et &

v = Constante

INSA‘ FFFFFFFFFFF



{5 GEOMAS Nonlinear hyperelasticity

M. T
G =Gg! 3;
. AU Fa
| Cambou et Jafari G, KE.paetn
(1988) - o T T :
x:xg[ L 2004 |
3pa | -lﬂjg:% -QEKEEHSH

Molenkamp (1988) A PeR

- Ko
I—SL]I'_;“ JK]'VS |
. = 2V 1
Huang et (nbson Gy, Ko vp K| Gp et 'V,
(1993)
Gy

G= )
1+ 24(1-vg )GV, |




{5 GEOMAS Nonlinear hyperelasticity

Houlsby model

The elastic strain energy ¢ is written as a function of volumetric
strain and shear strain: ¢ = ¢ (€, €.

dop  0¢

de, ' 0Oeg

The incremental stiffness matrix can be expressed as:

ARV ] ]
dgl =17 36| |de.
62 3G—ﬁ_ p_aCI_ 62g0

de, aevz’ e agSZ’ T de,  0e, 0Oegdey

p:

FFFFFFFFFFF
PPPPPPPPPP



{5 GEOMAS Nonlinear hyperelasticity

Houlsby model

According to Houlsby [15] and Einav [16], though ¢ is an
isotropic function of strains, the soil behaves incrementally like
anisotropic way when the value of off-diagonal terms J is non-
zero, in which situation the stress-induced anisotropy shows up.
The free energy expression could be written as:

_ k_.2,39_2
P = Pa (Egv +7€S )
with
k : bulk stiffness factor, g shear stiffness factor (dimensionless
constants for linear elasticity)

p, for the reference stress.

LYON



{5 GEOMAS Nonlinear hyperelasticity

Houlsby model
For non-linear elasticity, the proposed hyperelastic potential can be

written as:
Pa Z;n
P = kz-m [k - vo - (1 —n)[i-n
with triaxial formulation:
2 _ _x2 39'82
vg =¢&;," + k(l—:z)
. 1
Epy = &, T P
while with general stress formulation:
2 — |q. 1 ] [ y 1 ] 29-¢eijeij
Yo [8” + k(1-n) &j t k(1-n) t k(1-n)

n stands for pressure exponent, and has a significant influence on the effect
of induced anisotropy within the range between zero and one.



{5 GEOMAS Nonlinear hyperelasticity

Houlsby model

As a result, the formulas of bulk modulus, shear modulus and off-diagonal
terms in stiffness matrix are expressed as follows.

_1 n 1 2 1
K = palk(1—n)]i-n - {ﬁ' (ev + k(1—n)) ' [(8” )

1 2 3ge2 |2-2n
[(8” t k(1—n)) + k(1-n) }

3n—2
)2 3ge? Jz-2n
k(1-n)

_|_

3In—-2
n n.39.852, Sg‘gg 2—2n

3G = palk(1 —n)fi-n- 3gn' k(1-—n)2 [(gv t k(1—n)) + k(1-n) *

1 2 3ge2 |2-2n
[(Ev-l_k(l—n)) k(1-n)

3In—-2
k(1-n)

L 3gnes

] — pa[k(l - n)]l—n

[ tra —n)] [ &+ k(11 )

rrrrrrrrrrrrrrrr
FFFFFFFFFFF
PPPPPPPPPP
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Hypoelastic models



{5 GEOMAS Nonlinear hypoelasticity

 features

— Does not derive from a thermodynamic potential

— Stress increment depends not only from the
strain’s increment but also from the actual stress

e Equations

'-':Fij = Cijk] (Cmn )€k and 'jij = Cijkl (Emn)Ex

€ij = Djji1 (G mn )01 and  &ij = Dijjxi(€mn)Ok

LYON
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Nonlinear hypoelasticity

Ramberg et a o}’
= — - E.KEet
Osgood (1943) | © E"'K'[E] 1 etn
Gij = apdy + ey + M€ €y + 030,
+0g O Oy + usfé“ Oy + ﬁ&éﬁ]
!u' b 4! I-u' 5 |ﬂ: i
F.jv]jn{ﬂg%;i;ksem +00g (€44 €Oy *+ OikEcmEmi ) u“ﬂﬁ', ﬂ; n:‘;;ﬂ ’
1
+0y I:Elkﬂh:llﬁmj + 0 Emﬁmj] i
i . .
| "‘{’-i:{Ei!eEkmﬂmmﬂnj +ﬁﬂcﬂhntmﬂnj} l
e 172
Hansen {1963) u-{ ] aeth
a+be
Kondner (1963) |g=—o aeth
a+he i
— — - .
n
Janbu (1963) E; = Ehpa[ﬂJ Kpetn
Pa
INSA i ——— —- P S— —




{5 GEOMAS Nonlinear hypoelasticity

Richardson er | v~ Constante |
: !
%Tmanil%J} o G Gmax K a G.. etR .
(d'aprés Ramberg et [ . ]lr.~1 max
1+
Osgood, 1943) -

Isotrope - €5 =a-(p)''*
Holubec (1968) | Pr-Ff1 =4 (p) aetc

Anisotrope - £5 = ¢-(p)*"?

Roscoe et Burland 1+ e
k= et G=e
(1968) x 7 |

[K,e.)=K,+ma
e [<ea)=Komew tom Gy




{5 GEOMAS Nonlinear hypoelasticity

| loading |
E, ={1_Rf{1*lm¢]{ﬂ] -y ) t.pl[f]n

2 coose + o3 sind)

Duncan et Chang v =Co i v, @ Rk, net K,

(1970) " Unloading - reloading

L]
iy
Izur==1{urpa[“41) 1
Pa i

. - o Y2
i =1

Rachart, Hall et * Pa I G I
Woods (1970) a2 | g, K €l log :
(2,973—gy)" P |
G =0y ] Pa| — i |
+ o Pa i
loading | |
- B -
Melzon et Baron K =Ko+ K, +Kz6 i Koy ket Ky '
{1971 ) )
l Unloading - reloading ] Gp. oy et oy
| G=0Gp+op+a;4flz |
| Desa (1971, 1972) j;:%:a, +28:Y+3a37 4+ +na, ¥y0 aq, a3, 83,...,81 2,
INSAVZ="F ___ S ' .




{5 GEOMAS Nonlinear hypoelasticity

i-B
Vermeer (1978) |G =G| = et v = Constante Go, po, Betv
0 Po

Baladi et Rohani | & =Ki K’ G.K; et K,
(1979) G = Constante

Bazant et Tsubaki 1_1 1_1

—=—+0Q; et ——--——-+2P1 KO’ Go, Q, et P,

(1980) K K G G
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PERFECT PLASTICITY



{5 GEOMAS Perfect plasticity

Assumption
The material is considered as dry or saturated. In the latter
case, the effective stress is defined by the Terzaghi’s relation.

o’; = (0;— u) where u is the pore water pressure.

In Soil Mechanics, constitutive models are written for
effective stresses.

LYON



{5 GEOMAS Perfect plasticity

Thermodynamic basis — Yield criterion
The frictional-plastic slider is inactive as long as |o| < g,,
where g, is the yield stress.

(U)

Prototype model for
elastic-(perfectly)-plastic material

INSA & (L: loading , U: unloading)

Stress-strain relationship.




{5 GEOMAS Perfect plasticity

As the single internal variable, we take the
plastic strain €, and the expression for the free

energy is chosen as
V= 2E(e)? = 2 E(e - )
=5E(€)" = 5E(e - €)

where €€ = g-gP is the elastic strain of the
Hookean spring with modulus of elasticity E.

LYON



{5 GEOMAS Perfect plasticity

We then obtain the constitutive equation for the stress as

av
— Fle — P
0 =—- (e — )

and for the dissipative stress, that is conjugated to &P, as

av
ap=———E(e—ep)§0
JeP

The yield criterion is @ =0, where @ is chosen as

(o) = |o| — oy

sssssssss
PPPPPPPPPP



{5 GEOMAS Perfect plasticity

Remark:

Since the magnitude of stress can never exceed
the yield stress (in this simple prototype model),
it follows that the admissible stress range is
defined as those stresses for which @ <0.

(o) = |o| —ay

LYON



{5 GEOMAS Perfect plasticity

Plastic flow rule

It is assumed that no plastic strain will be produced
when © <0, i.e. when |o]| <0,

The material response is then elastic and || < g, thus
defines the elastic stress range.

However, when @ = 0 plastic strain may be produced.
The constitutive rate equation for €? is then postulated
as the associative flow rule

ad o
P = A0— = A\ —
‘ do |

LYON



{5 GEOMAS Perfect plasticity

where the plastic (Lagrangian) multiplier A is a non-negative
scalar variable. Combining with Hooke’s law expressed, the
differential equation for the stress is obtained

& = Bé — \E—
ol

The problem formulation is complemented by the so-called

elastic-plastic loading criteria. It follows that the general format
of the loading criteria is

A>0, &(0)<0, Ad(c)=0

—
LYON



{5 GEOMAS Perfect plasticity

Elastic-plastic tangent stiffness relation

Considering the plastic state defined by @ (o) =0, d) > 0 is not
admissible, due to the constraint @ =0, the plastic multiplier A
is determined from the consistency condition ¢ <0:

d’ 0P < 0 (rate of changing
- %0’ = of the yield criterion)
Inserting the differential equation for the stress (o) into this

inequality leads to

¢=—E(é—A—)—%Eé—E,\§O

—
LYON



{5 GEOMAS Perfect plasticity

. PIastic. loading (L) is defined by the situation A >0
and @ =0, in which case we may solve the

previous inequality for A to obtain
A= ¢
o]
this is a valid solution only when (o/|o|) € > 0, which is
the appropriate loading criterion, that must be satisfied

in order for plastic strain to evolve.

LYON



{5 GEOMAS Perfect plasticity

* Plastic unloading (U) is defined by the situation A =0
and @ < 0, obtained when (o/|o|) € £ 0, which is
the appropriate loading criterion, that must be
satisfied in order for plastic strain to evolve.

p_,00_,0 .
As ¢ , it follows that the rate equation for the

do la| °
internal variable P in terms of the control variable € is expressed as

P =¢ (L), é¢=0 (U)
Which in turns leads to tangent stiffness relation
=0 (L), 6= FEé¢ (U)

rrrrrrrrrrrr
PPPPPPPPPP
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When the yield criterion is satisfied, i.e. when
|o| = o, two different situations are possible:

®* The first situation is characterized by € and o having the

same sign, which gives plastic loading (L). The solution is then
e? =g and o =0, which can be expected for perfectly plastic

behavior (as shown in stress-strain curve) for which th
tangent stiffness is zero. m

T AR
* Remark : o=
the internal work 0;&;=0 (unstable state) - -

eP £e
-t -+
INSA ;"

—1— —©
R ’




My GEOMAS

Perfect plasticity

When the yield criterion is satisfied, i.e. when

o| = g, two different situations are possible:

* The second situation is characterized by € and o having

opposite signs, which gives elastic unloading (U). The solution
is then defined by e? =0 and ¢ = E€’, which corresponds to

elastic response

e Remark

the internal work gjg; > 0 (stable state)

A
Oy ——

o=0 (L)
|\

@

(U)

LYON
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{5 GEOMAS Perfect plasticity

|

f=f, and df =0
( Elastic—Plastic )

/ (Elastic) : .

(Elastic)
/ .\ a

(Elastic)

9

f(O‘I )éfé

Yield surface for a elastic-perfectly plastic material
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e Remark

The expressions introduced for the free energy ¥ and
the yield surface @ are not the only possible ones. For
example, we may introduce two internal variables (&°

and k) and set W — lE(E - Cp)‘.’. e New term
2 .
¢ = |0p| —@ € oyreplaced by

The stress o is still defined by & = %_W — F(e — €°)
€

While the conjugated variables o” and k (that are the
energy conjugate variables to €° and k) are

aw 5w
INSA i gP = ——— = (e — (p) =0 . Same model
P v = . Yy . .
— e I Ik with more complexity
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PLASTICITY IN SOIL MECHANICS

Nonlinear plasticity

Isotropic hardening

Single yield surface plasticity
Yield surface / bounding surface
Multiple yield surfaces

Cyclic behaviour

o Uk WwWwnNE
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Sample prep F

capteur de force

mesure de u (capteur)
ou
mesure de Av (volumeétre)

[V J—
Contrepression
eventuelle

Figure 9.5 : Principe de I'appareil triaxial de révolution

ICES
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{5 GEOMAS Nonlinear plasticity

1. Nonlinar plasticity

1.1 Free energy and constitutive relations

The free energy per unit volume of a dissipative material
is defined as W(g, k,), where € is the (macroscopic) strain,
whereas k, constitute a finite set of, say N, interna
variables that represent irreversible microstructura
processes in the material. A typical example (that we shal
consider later in more detail) is the plastic deformation
that is caused by the relative displacement of grains.

From Y(e, k,) we may calculate the stress o and the
socalled dissipative stresses k, (that are energy-
conjugated to k,) from the constitutive equations:

INSA O=— Ko=—7—, =12 .1
e ok M




{5 GEOMAS Nonlinear plasticity

Thermodynamic basis — Yield criterion

@T” hardening spring &4 GoHEP
E

AN/ - o1 e

— o=E¢
——
| et eP > £
[« >l >

Rheological model stress — strain relationship

The frictional-plastic slider is now increasing its resistance due to the amount

of slip developed. More specifically, the excess stress over the initial yield

stress is due to the “hardening spring” with stiffness H that is related to the

plastic strain. Upon unloading and reloading, the slider will thus become

inactive until the stress has resumed the previous level during loading, i.e. as

long as /ol < 0, + H IePl, where H > 0 is the (constant) hardening modulus.
S This behaviour is typical for hardening plasticity.
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2. Isotropic hardening

Apart from &, we now introduce the (isotropic)
hardening variable k, such that the free energy density
IS expressed as

1 1
V(e k) = EE(E — gP)? +§Hk2

and the stress o

oV (s k
o= (&, ) = E(e — &P)
de
b V(e k)
o= gep O

LYON



{5 GEOMAS Isotropic hardening

whereas the dissipative stress K, associated with k, is

B V(e k)

Y —Hk

K =

The yield function is now defined as

®(o,x) = |o| —0y, — K



{5 GEOMAS Isotropic hardening

Plastic flow rule

Inelastic deformation can be produced when @= 0. The associative
flow and hardening rules are then defined as

oP 0
p_,92 _, 0
€ - |0|
: P
o222 _
o
with
A=0, @(0) <0, A¢(0)=0
INSA ;=



{5 GEOMAS Isotropic hardening

The pair (¢ P, k') can be perceived as the outward pointing
normal from the cone defined by ®(o,x) = 0

®(o,x)=0

(@) (©)

(a) Associative flow rule for perfect plasticity, (b) Associative flow and
hardening rules for hardening plasticity.



{5 GEOMAS Isotropic hardening

oV (s, k) .
As K = — = —Hk then Kk =—Hk
dk
: ad
and k=x\an = —A
SO K =—HA (rate of evolution of k)
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Single yield surface plasticity
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Elastoplasticity

The basic principle of elastoplasticity is that strains are
decomposed into an elastic part € and a plastic part &P

c=¢g%+¢f

In the stress space the elastic domain is limited by a
surface called the yield surface determined by the
equation f(c) = 0. Inside this domain (f(c)<0) the
behaviour is purely elastic. When the stress state reaches
the limit of this domain and when the stress increment is
oriented towards the outside of the domain, plastic strains
start to develop

LYON
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Non-linear behaviour

elastic behaviour

O

.
-----------------------------

N

yield stress ¢
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Yield surface

Inside the yield surface : elastic behaviour

On the yield surface : plastic behaviour

q
A\
Yield surface
< >
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Examples of yield surfaces

Pressure-independent behaviour

Von Mises criterion

\/(0-1_0'2)2+(02_O'3)2+(O-3_O-1)2 iy or f(Jz)E,Jz—kZ:O
6

Tresca Criterion

max {l‘al - 0'2‘,1 o, -0 1‘0'3 —0'1‘} =k or (04 —03) =k with 64>6,>0;
2 2 2

I |t
LYON



@ GEOI\/Iéxsamples of yield surfaces

95 Tresca yield
surface

Von Mises

/ 1eld surface
/ g

----------

., o
------
--------

0
s,
.,
N o

plane stress
yield locus (05 =0)

m - plane

yield locus (0,0, +0,=0)

Figure 8.3.12: The Von Mises and Tresca yield surfaces

The Von Mises yield surface is a circular cylinder with axis along the space diagonal
The Tresca yield surface is a similar hexagonal cylinder
INSA =
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Examples of yield surfaces

Pressure-dependent behaviour

Drucker-Prager criterion
fU,J)=al +J, k=0

a=0 —> Von Mises criterion

Mohr-Coulomb criterion

f(o) =(c'y1—0’3) —sing(c’; + 0’3) — 2c cosg =0

¢=0 —s  Tresca criterion
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Examples of yield surfaces

Figure 8.3.15: The Drucker-Prager yield surface Figure 8.3.20: The Mohr-Coulomb yield surface

Extension of Von Mises and Tresca criteria for pressure-dependent materials
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Examples of yield surfaces

Tresca

Mohr-Coulomb

Representation in the octaedral plane




@ GEUMAS 3D Loading

Shape of the failure surface in the octahedral plane

Tresca (¢ = 0)

- - Drucker-Prager

~

(MCC|model)

~N

Mohr-Coulomb

o, compression
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Elastoplasticity

According to the classical theory of plasticity (Hill, 1950), plastic strain rates are
proportional to the derivative of the yield function with respect to the stresses. This

means that the plastic strain rates can be represented as vectors perpendicular to the
vield surface. This classical form of the theory is referred to as associated plasticity.

in which A is the plastic multiplier. For purely elastic behaviour A is zero, whereas in the
case of plastic behaviour A is positive:

af I
A=0 for: f<0 or: ad—f. D°: <0 (Elasticity) (3.4a)
=
ar T .. .
A>0 for: f=0 and: e D >0 (Plasticity) (3.4b)
o =
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Yield surface and plastic strain increments

| e
LYON
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Plastic potential

> Q
<

Plastic strain A
increment vectors

-

> P
Associated flow rule Non-associated flow rule
Yield surface Yield surface
= plastic potential contour 7 plastic potential
contour
deP = Adf/do deP = Adg/do
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Elastic perfectly plastic model

WV




GEOM‘i‘AI'nS Mohr-Coulomb Model

(o) =(c'y— o’3) —Sing (o4 + ’3) — 2c cos¢g =0

-1

~

-0‘2
Figure 3.2 The Mohr-Coulomb yield surface in principal stress space (€ = 0)

INSTITUT NATIONAL
DES SCIENCES
APPLIQUEES

LYON

INSA




@ GEOM'i‘AhSe Mohr-Coulomb Model

Sf(o) =(c'y—0’3) —sing (c’; + 0’3) — 2c cosgp =0

Associated flow rule

deP = Adf/do

d8p1 = de/dGl - 7L(1' S|n(l))
deP; = Adf/do; = -A(1 + sind)

deP, = dePy + dePy =-2Asing ~ —>dilative behaviour



@ GEOMAFCI’\e Mohr-Coulomb Model

G1-63
A
 §
2sin@ - Jr2ccoscp
1 —sing . I -sing
E
0 ¥ >
€1
-
/23in¢/(1-sin¢)

/ >

0
1-2v / €1
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The Mohr-Coulomb Model

Non-associated flow rule

However, for Mohr-Coulom type yield function, the theory of
associated plasticity overestimates dilatancy. Therefore, in
addition to the yield function, a plastic potential function g is
introduced. The case where g # f is denoted as non-associated
plasticity. In general, the plastic strain rates are written as:

deP = Adg/do
g (o) =(cy—0o3)—siny (c; + o’5)

LYON
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Non-associated Mohr-Coulomb Model

G1-03
A
/' }
2s11.1(p o, + 2CC(?S(p
I -sing I -sing
E
0 ¥ >
€
=2siny f
1 —siny 1
0 — >
Y=0
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3.3 BASIC PARAMETERS OF THE MOHR-COULOMB MODEL

The linear elastic perfectly-plastic Mohr-Coulomb model requires a total of five
parameters, which are generally familiar to most geotechnical engineers and which can
be obtained from basic tests on soil samples. These parameters with their standard units
are listed below:

E . Young's modulus KN/m?]
% . Poisson's ratio -]
c . Cohesion KN/m?]
© Friction angle ]
() . Dilatancy angle ]

INSA 5
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Aq'(MPa)
1.5 ‘
N - Dense sangd
E— -
o B l

-2 siny/(1- siny)

Dense sand

INSTITUT NATIONAL
N |
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Lyon o/

4




My GEOMAS
The Mohr-Coulomb model

E c

Sand References (thmS) (MPa) v (kPa) (f | :l;
Hostun (loose) Mounir (1992) 14 55 028 | 0 35 0.7
?;;t;‘)n (mediumy / nir (1992) 15.5 85 028 | 0 37 | 55
Hostun (dense) | Mounir (1992) 163 95 0330 41 | 11
Fontaimebleau Ghorbanbeigi (1995) | 15.5 40 033]0 39 14
Labenne Mestat ef al. (1999) 16 336 028 | 1 365 114
Karlsruhe Arafat1 (1996) 16 30451 02503 416 | 116

Table 3.7. Values of the Mohr-Coulomb parameters (sands)
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« IMPROVED » MOHR-COULOMB MODEL
U
Description of the non linearity

Elastoplasticity Theory

: I I I | I I I I | I I I I | I I I I :
Elastic — —
Porfectl - 1 Hardening
erfectly 71— <\ -
- - Elasto
Plastic o T
Model _ f_ Description _E Plastic
w” [ of the non - Model
4& _: o
: | | | | | | | | | | | | | | | | | | :
€
1

I |t
LYON
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Elastoplasticity

force hardening D

N B
A
Yield pont -----

elas.tic unload
loading

0 C i

< S 5 displacement
plastic elastic

deformation deformation

Hardening behaviour
R —
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Hardening behaviour : f(o,a) = 0

a is the hardening variable

q q
A

>

sotropic hardening

v/
/ \
4 \
\ /
\ >p l/

Kinematic hardening

[

Inside: Elastic ~ Stress path

Different types of hardening law
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c Maximal
§ ShearL_Strength YIELD SURFACE
= ine
& - m_(0)
> P . p
o r = e f(g7rd)_ Xq_(p' )er(gg)
" M,
. * Characteristi i
.7 s hardening
r.d - reI 6 Sln (P' :
“ nitial Elastic Domain m 6 — X| COS e - X Sin 6
s Initial Elastic D p( ) \6(3—sin(p') { \/g }
'Cp Mean effective stress p'
Extension Compression (Bar det 1990 ) 0 = Lode ’s angle
3xM
(Pv: AI'C Sin p HARDENING FUNCTION
6+ Mp
_sino' T4 (gd ) :‘ '
c':3 Sm(P'prxCp @ -I—Sd

rrrrrrrrrrrrrrrrrr
FFFFFFFFFFF
PPPPPPPPPP
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Characteristic state

q, déviateur 4
des contraintes

— ——————— - ———————— —

0,

Etat caractéristique

8volumiquc

Figure 3.11. Definition of the characteristic state

INSTITUT NATIONAL
| e
LYON
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Non-associated flow rule

dey, M, q
def mi(60) | e dnlel)
B I—I'el |
6 sing,' .
0)= 0— £ 0
mc() \/5(3_Sm(pc')x{cos 1) X Sin }

dsvp > 0 below the characteristic state line : contractive behaviour
dsvp < 0 above the characteristic state line : dilative behaviour
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IDENTIFICATION OF THE 7 PARAMETERS
J
LABORATORY TRIAXIAL TESTS

E : Tangent modulus Curve (- g effect of p°’
v : Poisson ’s ratio Curve g, - g

Mp:

Maximal shear line slope (p’,q) diagram
M. : Characteristic line slope (p’,q) diagram
M, = M, for grouted sands
C, : Cohesion (p’, q) diagram

r, : Size of elastic domain

a,. :hardening rate
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500

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
XXX

c'_=100 kN/m?

64 MPa < E < 222 MPa

1500 [T T L — I L — T T T

C;-‘ E DDDDDDDDDDDDDDDDDDDDDDDDDDDDD E

S e 200 kN? ] Uncemented

= 1000 F ” =

of : Fontainebleau Sand
8 | o e o

k7 Eoof g G'C =200 kN/m E — — — — — . . _
[ C i

2 C ]

© L il

'S . ]

[} i

Qo i

i 0 0.01 0.02 0.03 0.04 0.05 V= 0.25
Axial strain €,
R M. =117 < o,.’= 29.3 degrees
LT M, =1.60 & ¢ = 39.1 degrees

0.02

0.015

C,=0& ¢’= 0
l'e1=0.01
0.00049 < a.. < 0.00087

o o' =400 kN/m?

o
X A0
0%

Volumetric strain ¢
o
—

0O
Xooo
X 50
02°0
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Axial strain g,
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Deviator stress q ( kN/m 2 )

Volumetric strain ¢

3000

2500

2000

1500

1000

500

0¥

0.01

0.005

-0.005

| .
c' =400 kKN/m?

o' =200 kN/m?

e == e uan
.

c'_=100 kN/m?

0 0.005 0.01
Axial strain g,

0.015

0.02

c'_=100 kN/m?

=
o
0
o
o

i o |
vvvvv
u;zgj@: i |

c'_=400 kN/m?

T =T

0 0.005 0.01
Axial strain g,

0.015

0.02

Cemented
Fontainebleau Sand

C/W=0.235

E =307 MPa
v=0.20
M.=1.59 & o¢.’= 38.9 degrees
M, =1.68 < ¢’= 41.0 degrees
C,=317 kPa& ¢’= 276 kPa
rg=0.1
0.00012 < a,, < 0.00018



asymptote

__________ failure line

axial strain - ¢4
>

Figure 6.1 Hyperbolic stress-strain relation in primary loading for a standard drained triaxial test

Finite Element Code PLAXIS



deviatoric stress
o1 — o3
asymptote

I AP ——— failure line  Rf
qr _

»
axial strain - g4

(Plaxis 2D Material Models Manual 2018)
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e Equations (triaxial test under drained condition)

— For g<qy: 1 q
Ei 1 - Q/Qa
£ 2Esp
— Value of g; at failure =5 R
qs = (ccotyp —a'3) 23|n.<,9 and: qazﬂ
1—singp Ry

— Secant modulus at 50% of the maximun deviatoric stress

Eeo = Eggf(ccos'¢ —0'3 Slnap) m
ccosp + P siny

— Unloading / reloading modulus E,,

E, - Er ( CCOSy —0'3 smg)m
- ur .
ccos ¢ + p® sinp

sssssssss




@ GEUMAS Yield surface

f=f—"P

where f is a function of stress and ~” is a function of plastic strains:

- 2 q 2q
f= - P = (2P — Py = —2&P
Ei1—9/qa Ey ’ (Be1 — <) ‘

deviatoric stress
lo1 — o3|

/

Mohr-Coulomb failure line

Mean effective stress

— Figure 6.2 Successive yield loci for various constant values of the hardening parameter v” _
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Potential function

2P = Sin g (6.11)

Clearly, further detail is needed by specifying the mobilised dilatancy angle 1. For the
present model, the following is considered:

For sinpm < 3/4sinp : Ym=0
SiN m — SIN Yey

For singpp > 3/4sinp and ¢ > 0 Sin 1y, = max ( ,0) (6.12)

1 — sin pm Sin ey
For sinypm > 3/4sinpand v <0 Um =
If o = Um=0

where @, is the critical state friction angle, being a material constant independent of
density, and ¢, is the mobilised friction angle:

, o1 —0'3
Slng’)m =

(6.13)
o'y+0's —2ccoty
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Failure parameters as in Mohr-Coulomb model (see Section 3.3):

c . (Effective) cohesion [kN/m?]
© . (Effective) angle of internal friction [°]
U . Angle of dilatancy [°]

Basic parameters for soil stiffness:

EL . Secant stiffness in standard drained triaxial test [kN/m?]
E{,‘Z,Q . Tangent stiffness for primary oedometer loading [KN/m?]

- : Unloading / reloading stiffness (default £j¢'= 3EL) [kN/m?]
m : Power for stress-level dependency of stiffness [-]
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Drained Triaxial Tests on loose Sand: experiments/HS model simulations

loi-04| [kPa

800 - W

400_. e B S
- test data
200 5
0 I 1
0 5 10 15
-£1 [%]
Figure 13.7 Results of drained triaxial tests on loose Hostun sand, principal stress ratio versus axial
strain
&v [%]
0
-2
=£1 [%]
Figure 13.8 Results of drained triaxial tests on loose Hostun sand, volumetric strain versus axial
strain



l_'.-biirgﬁmrli\aq(é}%sts on dense Sand: experiments/HS model simulations

|o1-03| [kPa]
1400

12004

1000 ~brreryff

800 | S S

@ Hardening soil model
~test data

600 1./

400 _

200

0 5 10 15
-€1 [%]

Figure 13.9 Results of drained triaxial tests on dense Hostun sand, principal stress ratio versus axial

& [%]
8_

@ Hardening soil model

— testdata

-€4 [%]

Figure 13.10 Results of drained triaxial tests on dense Hostun sand, volumetric strain versus axial
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Clay
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Modified Cam Clay Model

In the Modified Cam-Clay model, a logarithmic relation is assumed between void ratio e
and the mean effective stress p' in virgin isotropic compression, which can be formulated
as:

e—e’=—)\In (%) (virgin isotropic compression) (10.1)
The parameter A is the Cam-Clay compression index, which determines the
compressibility of the material in primary loading. When plotting relation (Eg. 10.1) in a

e-In p' diagram one obtains a straight line. During unloading and reloading, a different
line is followed, which can be formulated as:

e—e’=—xln (%) (isotropic unloading and reloading) (10.2)
The parameter x is the Cam-Clay swelling index, which determines the compressibility of
material in unloading and reloading. In fact, an infinite number of unloading and reloading
lines exists in p'- e-plane each corresponding to a particular value of the preconsolidation
stress pe.
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Clay
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The yield function of the Modified Cam-Clay model is defined as:

2
f= % +P'(P — Pe) p. is the hardening variable (10.3)

The yield surface (f = 0) represents an ellipse in p'- g-plane as indicated in Figure 10.1.
The yield surface is the boundary of the elastic stress states. Stress paths within this

boundary only give elastic strain increments, whereas stress paths that tend to cross the
boundary generally give both elastic ans plastic strain increments.

In p'- g-plane, the top of the ellipse intersects a line that we can be written as:
qg= Mp (10.4)

g A Critical State Line

'dry side’ 7 wet side”

Kg°-line Oedometric test

Consolidation stress
- p'

Pe

INSA = Figure 10.1 Yield surface of the Modified Cam-Clay model in p'- g-plane
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Roscoe and Burland (1968) derived an associated plastic flow rule
which describes the ratio between incremental plastic volumetric

strain and incremental plastic shear strain. Itis:

= deP /desP = (M?-1n?)/ 2n

where n = g/p' and at failuren=M

N

normal
P consolidation line
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J GEOMﬁ'@ening mechanism for normally
or lightly overconsolidated clay

Note the normality rule
states that the incremental S

volumetric and shear strains M
1

are perpendicular to each
other.

Yield Surface at

W0
Effective R
Stress Path e
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Strain hardening behavior for lightly overconsolidated clay
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' e : yield
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Critical State _, . .
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Shear Stress, ¢

represented
by strain
hardening.
7 ; :
Initial Yield 70 P¢

Surface  Mean Effective Stress, p'
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Consolidated Drained Test Behavior of Lightly Overconsolidated Clay
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Stress-Strain Curve showing strain hardening

Note that in the
non-linear range
of this stress-
strain curve, the
shear resistance is
slightly increasing.
This represents
strain hardening.

hear Stress, g

Yield stress 4>

Axial Strain
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Ggrgmgﬁaxial test on normally consolidated clay
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In conclusion, the Modified Cam-Clay model is based on five parameters:

v . Poisson's ratio

K. Cam-Clay swelling index

A Cam-Clay compression index
M: Tangent of the critical state line

ent-  Initial void ratio
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MMC hardening/softening law

g A Critical State Line

'dry side’ 'wet side'

de, P<0 ,
softening P " dgP

I dep
de, P>0

de,P hardening

>p'

plc/2 P

Figure 10.1 Yield surface of the Modified Cam-Clay model in p'- g-plane
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Strain softening behavior for heavily overconsolidated clay

Dry Side : Wet Side
Note the
yield
Effective Stress
surface

Path (slope = 3:1)
Initial Yielddecreases

 Surface | ilthe

Shear Stress, g

returning

stress path
touches
, —the critical
Po i P .
/ Mean Effective Stress, p’ stateline.
Yield Surface at

Critical State
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Stress-Strain Curve showing strain softening

Note that in the
non-linear range
of this stress-
strain curve, the
shear resistance is
decreasing. This
represents strain
softening.

Shear Stress, g

Axial Strain
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Maximum Strength Envelope: experiment/MCC Model

OCR =1
0,8+
M\ g A Critical State Line
0,6+ y 'dry side' " wet side
- ?; 8 Ké’c-line
& nal o &
\E./ 0.4 ; 8
o o
o
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MCC not appropriate for overconsolidated clay
MCC not appropriate for sand
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« What is the best model ? »

There is no direct answer to this question.
The universal model does not exist.

Each model has his advantages and its
disadvantages.
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It is, therefore, necessary to be able to understand the
capabilities as well as the limitations of the different

models at our disposal in order to select the
appropriate one according to the nature of the soil
and the characteristics of the numerical simulations to
be undertaken (foundations, tunnels, excavations,...).

This is not an easy task and there is no definite answer
to this problem.

| will give you some elements of discussion and
illustrations of the model performances for different

CasSes

LYON
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Plaxis: Linear or Non-linear Elasticity

Stiffness moduli EXS', ES', & EIf" and power m

The advantage of the Hardening Soil model over the Mohr-Coulomb model is not only the
use of a hyperbolic stress-strain curve instead of a bi-linear curve, but also the control of
stress level dependency. When using the Mohr-Coulomb model, the user has to select a
fixed value of Young's modulus whereas for real soils this stiffness depends on the stress
level. It is therefore necessary to estimate the stress levels within the soil and use these
to obtain suitable values of stiffness. With the Hardening Soil model, however, this
cumbersome selection of input parameters is not required.

Instead, a stiffness modulus EZ is defined for a reference minor principal effective stress
of —o'3 = p"®'. As a default value, the program uses p™ = 100 kN/m?.

As some PLAXIS users are familiar with the input of shear moduli rather than the above
stiffness moduli, shear moduli will now be discussed. Within Hooke's law of isotropic
elasticity conversion between E and G goes by the equation E=2 (1+v) G. As Ey is a

01/

mn WV

1
Figure 6.4 Definition of EL, in oedometer test results
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Plaxis : Loading or unloading

MC Model HS Model

deviatoric stress
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./ o A asymptote
Ei Eu o I A failure line
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EExamﬁ of an unloading case: soil excavation
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GEI‘:Q(%% of the influence of non-linear behaviour

Tunnel in London Clay

Excavation of Westbound Tunnel
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Conclusion

The quality of the numerical simulations depends
strongly not only on the choice of the constitutive
model, but also on the parameter determination.

To improve this quality one should have

1. a thorough understanding of the capabilities and the
limitations of a given model,

2. a well adapted procedure for the parameter
identification

Ref. P.Y. Hicher & J.F. Shao (2008) “constitutive models for soils and rocks”,
ed. ISTE-Wiley, 439 pages
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