Exercise EHL

This exercise studies the lubrication of a circular contact (ball bearing in gear box) under the following conditions ::

Lubricant : $\alpha = 2*10^{-8} \text{ Pa}^{-1}$, $\eta_0 = 2*10^{-1} \text{ Pa.s}$,

Material : E'= $2*10^{-11}$ Pa, Geometry : R =0.01 m, Speed : $u_1+u_2=1.0$ m/s

Load: w = 20 N

We start our study by a Hertzian (dry contact) analysis

1)Compute the maximum pressure and contact radius ph and a.

Ph=0.73GPa, a=1.14e-4m

2) Compute the operating parameters W, U et G.

W=1e-6,U=1e-10,G=4000

3) compute the Moes parameters, indicate the lubrication regime and read the film thickness from the graph, convert the value to microns

M=31.6, L=12.6: piezo-viscous-elastic regime, H_c=4.5, h_c=0.45 micrometer In the next part the circular contact is approximated by a line contact (a=b).

4) choose w_1 such that the line contact and circular contact operate under the same (piezovoscous) lubrication conditions.

a=b=0.114 mm, p_h identique! p_h=0.73 GPa, w_1=1.3e5 N/m

5) what is the total load on the line contact assuming its width to be 2a.

W=29.6N, not much different from the 20N of the circular contact!